Articles by "MATLAB"

Showing posts with label MATLAB. Show all posts

MATLAB R2024b v24.2.0.2712019 x64 [Size: 12.530 GB] ... MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.
 
Typical uses include: Math and computation + Algorithm development + Modeling, simulation, and prototyping + Data analysis, exploration, and visualization + Scientific and engineering graphics + Application development, including + Graphical User Interface building. MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of the time it would take to write a program in a scalar noninteractive language such as C or Fortran. The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects, which together represent the state-of-the-art in software for matrix computation. 

MATLAB has evolved over a period of years with input from many users. In university environments, it is the standard instructional tool for introductory and advanced courses in mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-productivity research, development, and analysis. MATLAB features a family of application-specific solutions called toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn and apply specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment to solve particular classes of problems. Areas in which toolboxes are available include signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

Teacher:
Nastaran Reza Nazar Zadeh - Language: English - Videos: 50 - Duration: 4 hours and 11 minutes.

Artificial Neural Network and Machine Learning using MATLAB This course is uniquely designed to be suitable for both experienced developers seeking to make that jump to Machine learning or complete beginners who don’t understand machine learning and Artificial Neural Network from the ground up. In this course, we introduce a comprehensive training of multilayer perceptron neural networks or MLP in MATLAB, in which, in addition to reviewing the theories related to MLP neural networks, the practical implementation of this type of network in MATLAB environment is also fully covered. MATLAB offers specialized toolboxes and functions for working with Machine Learning and Artificial Neural Networks which makes it a lot easier and faster for you to develop a NN. At the end of this course, you’ll be able to create a Neural Network for applications such as classification, clustering, pattern recognition, function approximation, control, prediction, and optimization.

What you’ll learn: Develop a multilayer perceptron neural networks or MLP in MATLAB using Toolbox + Apply Artificial Neural Networks in practiceBuilding Artificial Neural Network Model + Knowledge on Fundamentals of Machine Learning and Artificial Neural Network + Understand Optimization methods + Understand the Mathematical Model of a Neural Network + Understand Function approximation methodology + Make powerful analysis + Knowledge on Performance Functions + Knowledge on Training Methods for Machine Learning.

Contact Form

Name

Email *

Message *

Powered by Blogger.